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Abstract

Explicit expressions of the MSA solvation thermodynamic functions, the Gibbs free energy,

energy, enthalpy, entropy, apparent molar heat capacities and partial molar volume are derived

starting from the Helmholtz free energy. The thermodynamic consistency of the MSA solva-

tion thermodynamic functions are discussed. Some limiting behavious of the MSA solvation

thermodynamic functions are compared with the Born theory. The effect of explicit solvent

structures in the MSA theory on the Gibbs and the Helmholtz free energy is given special

attention. Model Calculations of alkali and halide ions in water are carried out and compared

with experimental data. The apparent molar heat capacities at constant volume and pressure,

and the partial molar volume are calculated along an isobaric line to the critical region of a

dipolar liquid. A great deal of insight has been gained on the behavious of the solvation ther-

modynamic properties near the critical region of dipolar solvent. It helps to explain some of

the recent experimental observations.
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* I. Introduction

The theory of electrolyte solution has been an active research subject for a long time1'2.

Recent efforts are focused on obtaining structures and thermodynamic functions starting from

molecular models of solvents which are treated explicitly3'4. There is little doubt that ion

solvation in a molecular solvent is a complicated process. Sophisticated modeling which implies

extensive numerical solution of integral equations4 and large scale simulations are needed to get

accurate structural information and thermodynamic properties5' 6'7 . However we believe that

some simple analytical theories can still capture some of the dominant features in the solvation

process, of which the Born' theory is a beautiful example. It is the propose of this paper to

show that an analytical theory known as the Mean Spherical Approximation(MSA) is valuable

to gain insight on the solvation thermodynamics.

Indeed, the detailed theoretical and simulation studies5' 6' 7 show that in spite of sophisticated

solvent re-organization and polarization around ions the Helmholtz solvation free energy of an

ion in a polar solvent is approximately a quadratic function of ion charge. This observation

is strongly supported by experimental data9,10 . One can understand it by examing a well

known effects, such as, the dielectric saturation11,12' 13 near the ion. For some systems, the

dielectric saturation of solvent around the ion may not be very important or may be cancelled

by an opposing effect, for example, the electrostriction14. There are simple relations between

the internal energy and the Helmholt2 free energy in some simple theories such as that due

to Born9 , which hold approximately as shown by the simulation and sophisticated theories.

For example, the Helmholtz free energy is half of the internal energy. Having these basic

features the simple Born equation may somehow be able to give a good representation of the

solvation free energy. It seems that there are indeed ways to find a consistent set of radii to

fit experimental data of some solvation thermodynamics using the Born equation' 5' 16 . On the

other hand, the Born theory is, after all, an over simplified theory, in which the solvent is

treated as dielectric continuum. The solvent reorientation and structure breaking that occurs



when an ion is dissolved can not be properly accounted by the continuum model. The MSA

is an analytically tractable Hamiltonian models which may provide useful information on the

solvation of ion in dipolar solvent"'1 s Basically the MSA is a linear theory but it treats the

excluded volume consistently 3. It has also the remarkable property of satisfying the infinite

charge, large density limits of Onsager 19 . The MSA Helmholtz free energy of charging a cavity

in a dipolar hard sphere liquid was calculated by Chan et al20 . The result is of the form of

the Born formula with a modified ion size dependent on solvent properties. In this paper, we

will obtain other thermodynamic functions based on the Helmholtz free energy. Indeed, the

MSA gives new physical interpretation to some of the solvation thermodynamic functions, for

example, the MSA Gibbs free energy has two terms, one due to the ion-dipole interaction, and

another due to the solvent re-organization, i.e., the structure breaking effect. As was shown

by Garisto and Patey21 that the MSA Helmholtz free energy is very dose to the LHNC in a

wide range of dipole densities. This is consistent with earlier observations that the MSA gives

reasonable thermodynamic properties though the structure may not be very good 3 . Recently,

Blum and Fawcett 22 find the MSA is quite useful in estimating the outer-sphere contribution to

the activation parameters for homogeneous electron-transfer reactions, and also in calculating

solvation Gibbs free energy in various solvents.

Experimental data of electrolyte solutions at high temperature and pressure has recently

become available23' 24. The heat capacities and partial molar volume show very interesting

"behavior near the critical region of water. There have been attempts 25 to apply the Born theory

to understand experimental observations. It is found that the Born theory does reasonably well.

In this paper, the newly obtained formulas are used to explain the experimental observations

using the MSA.

In the first section, we derive expressions for thermodynamic functions, such as, the Gibbs

free energy, internal energy, entropy, heat capacities from the Helmholtz free energy. The

thermodynamic consistency of the MSA solvation thermodynamic functions is discussed. In
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the second part, the free energy and entropy are calculated and compared with experimental

data of alkali and halide ions in water at 298K. The dipole moment is adjusted to fit the MSA

dielectric constant to the experimental value, and the dipole moment so obtained is considered

to be the effective liquid phase dipole moment of water. We also calculate the heat capacities

and partial molar volume at temperatures and pressures near the critical point of a dipolar

liquid.

II. Theory

A. The solvation Helmholtz and Gibbs free energies, entropies and
chemical potentials

The solvation Gibbs free energy is the standard free energy change of transferring an ion from

the gas phase at 1 atm to solvent (mole fraction standard state). We assume that the standard

free energy change for such a process can be broken down as,

AGO = AG nO + AGe', 0  (1)

where AGn,° is the free energy of solvation of a non-polax gaseous solute of. the same size as

a given ion and AGe1 ,° is the electrostatic free energy of solvation. The other thermodynamic

excess functions such as the Helmholtz free energy, entropy, enthalpy and energy axe of the

same form. AGn'° can be estimated by various theoretical models26 . In this paper, we only

consider the electrostatic contribution. The electrostatic part of the Helmholtz free energy have

been derived by constructing a thermodynamic charging process20 . Using the notation of Blum

and Wei27, it can be written as 20,21,27

A -Z 2 e2 (1 - 1f/C)

0.i + o'd/A° (2a)
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where Zie is the charge of an ion of species i, oi, ad are the diameters of ion and dipole

respectively. The equilibrium dielectric constant, c°, of the MSA is given by a single parameter

AOo0 (A°(1 + Ao) 2 )2
=6 (2b)

16

Ao is a solution of following algebraic equation 22,2'7

d _(Ao + 2),)(1 _ 1 (3a)

where d2 is a parameter determined by the solvent dipole moment

d= Tpdl 2 /kT (3b)

Pd and y are the density and dipole moment of solvent.

The entropy is given by the temperature derivative of the Helmhotz free energy at constant

volume. To calculate such a derivative we have to calculate (PA•)v. From (3a), we get

Ao -(e"o_ 1)AO(1 + AO)(2 + AO) (4a)

T0-)v - 2T(2eo(1 + Ao)2 + Ao(Ao + 3))

and
&0 2eO(1 + 3AO) (4b)

a= o o(1+ Ao)

The solvation entropy is therefore given by

(OAA'° OAAC°O (5
sic' -( aT )v- i-A (-O-)v. (5a)

Using the fact that AA"'° is a unique function of b2, from (2) and (4), we have explicitly

AS. -Z2e 2A°(2 + A°)(1 - 1/c°)(2(3A" + 1)(aoAo + ad) + (eO - 1)(1 + A°)ad)
2TW3  

(6)

where for later convenience, we defined a set of three W parameters

W, = 4f-A°(1 + AO) + 2 + 3A°, (7a)
O'd

W2 = A°(1 + A°)ad(1 - 1/6P) 2•oWi , (7b)

4



W3 = (ffAO + Od)2(2E(1 + Ao) 2 + Ao(3 + A0)) (7c)

From the standard thermodynamics relation, the solvation energy is given by

A EjO = AA•" + TAS•'°. (8a)

According to Garisto and Patey2 , the solvation energy consists of two terms, ion-dipole, AEi,

and dipole-dipole, -EC., contributions:

0 1E~0 + AE . (8b)O

As it was shown 20 ,21' 27

AEfd'° = 2AA 0, .° (8c)

Equation (8c) holds precisely for the continuum solvent model. Accurate theory7,20 and simulations"'6

also show that the Helmholtz free energy is approximately half of the solute-solvent contribution

to the solvation energy. Then from (8a),

AEjo= 2 A Eje, + TASf,' (8d)

and
A•iO= 1 ei'o Se'

\Ej "- 2/AEEd + TASeI°O (8e)

Explicitly we have
"0 -2Z,~e2(I - 1/f 0 )

odi + Ud/A° (8f

and

A =•e"o TASo - AAe, 0 
- (8g)2W

3  

(82)

(8g) has been obtained by Garisto and Patey20 by evaluating the energy integral. AAz'°0

is obtained essentially by calculating the virial type integral, ie, by the virial route. As was

pointed out by Garisto and Patey the MSA result of the solvation thermodynamics is consistent

at this stage because one gets the same result from the energy and the virial route. As we see

from (8g) that AE;ad is always positive, which corresponds to solvent structure breaking in

charging an ion.
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In order to calculate the Gibbs free energy, one starts with the thermodynamic relation

- OpdAA "° (9a)
apad

Following the same procedures as in (5) we have

AA +pdOAA OA° (9b)AG•'°= AA•'° +P a, Pd"

From (3b), it can be shown that

-•O )T/( a )v = -T/pd. (9c)

We then get

AG• '° = AAj"' + TAS" 0 , (9d)

that is,

A(c1.O = AEf'. (9e)

This is, in fact, a known result of the MSA 28'29. This shows again that the MSA solvation

thermodynamic functions are thermodynamically consistent at this level. From (8g) and (8f),

we have explicitly,
A ,o = -2Zi'e 2(l -_ 1/0) Z~e2W2

a, + ad/A° + 2W3

Comparing with (1) and (9), we find

AG-e"° -6 AAel'° (9g)

If one charges a cavity in a dielectric continuum the work needed is the same at constant presure

as constant volume as long as c0 remains unchanged, ie,

AG•e1, = AA!"'°. (9h)

When a cavity is charged in a molecular solvent the work is different. The complexity of the

solvation is reflected in equation (9f). The first term is due to the electrostatic interaction

between the ion and the dipoles. The second term is the change in the dipole-dipole energy due

6



to the ion. As we pointed out before, it is always positive, which corresponds to a structure

breaking effect 26 . The Helmholtz free energy is half of the first term in (9f). Only if the second

term equals half of the first term the Helmholtz free energy is not equal to the Gibbs free

energy.

Consider some limiting cases. In the high coupling himit 19' 27 , where the dipole-dipole inter-

action becomes infinitely strong, co -+ 0o, from (2a), (9f), we get

A ,°T' = AA' - 0 , (loa)

This is equivalent to the classical Born result' in the same limit, and

ASf'° = 0 . (lOb)

This shows that strong coupling between solvent molecules makes the re-organization of the

solvent around the ion impossible, and therefore the entropy change which is the measure of

the microscopic order is zero.

When the solvent diameter becomes infinitely small, ad = 0, we recover the continuum limit

results. We find the the Helmholtz free energy is given by

A -Z~e 2 (l- 1/&°) (lla)

which is precisely the classical Born free energy. However the Gibbs free energy is found to be

different form the Helmholtz free energy in this limit,

A Gie' = Ze( _ 1/60) (2- 1 - 1/60(1b
0 1 -+ -(' o))(11b)

2co(I+AO) 2

and the entropy is given by

ASil'o- -Z2e 2 (l - 1/&o)(2 + A°)(3A0 + 1)

oiT(AO(3 + AO) + 2eO(l + A°)2) (lic)

This indicates that the solvent effect, in this limit, is still different from that of the continuum

dielectric media. One can calculate the entropy by taking derivative of AAt'°0 in equation (11a)

with respect to T. The same result should be obtained.
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From Blum and Wei27 , the electrostatic part of the excess chemical potential of the MSA

can be written as for an ion-dipole mixture of equal ion size(a = - , Z = Z,, p - pi)

# / ( kT) = ZVdo(dobo - d2blo,/crd)
4S (12a)

CI/(kT) = -d 2 (2d 2b2 + dobOr2/a2)4Add 3 (12b)

where

d2= 47r,7o2e 2/(kT) , (12c)

- P, Z= (12d)

The b parameters can be obtained explicitly in the low density limit as

bo = -K/2 (13a)

b- b'K + b 22 /2 (13b)

b2 = b2 + b2 2/2 (13c)

where r is the Debye screening length

do(13d)

and

bl = 9d 2(1 + Ao) 2  (13e)
4(1 + orAO/ud)(2 + AO) 2

b2 = -9d 2(1 + A0 ) 20'd (13f)4urAo(2 + A0)2

b2W= d -- W 3/ ," (13g)

After some algebra, we have

ejl 1 A -o Ze2'i (14a)
'' 2 .d 2aoe0

CIl - 1(Gj/' + AGedd°) _2dbO kT

Zdpd 2 3pde (14b)

The first term of (14a) is simply the solvation Helmholtz free energy. The second one gives

the Debye-Huckel limiting law. The second term in (14b) is the chemical potential of the pure

8



dipole liquid and terms inside the bracket of the first term are related to the solvation entropy,

that is,

g 2o eO (14c)

-l 77TASid'0  d22bO2k T
A1d Zjpd 27rpdo'd (14d)

The total solvation Gibbs free energy can be obtained making use of the thermodynamic relation

AGel',O = >Z p4 - AGd (15)

where AGd is the Gibbs free energy of the pure dipole. This result agrees with what we obtained

previously, ie, (9b). The cavity and ideal parts of the standard chemical potential are discussed

by Zhou et al 30 .

B. The apparent molar heat capacity at constant volume and pres-t el,0 CeIO ',
sure, ,lO, p, , enthalpy, AHj1"0 and partial molar volume, Ve,0

To calculate Ce7,o Ofeo, we have to take second temperature derivative of AAd'° or first deriva-

tive of AEj1 '°. From a standard thermodynamic formula, OV is given by

e0 0 = (Z.AE• 1 °" 9A°

v,, = ( 5 )v = a- (--T)v (16a)

After considerable algebra, we have

= +Z~e2( O)°

• =l -2A 0 e , IMF (OdW 3e
0 ((1 - 1/6 0 )2((1 + 2AO)W 1

+A°(1 + A°)(4ai(1 + 2A°)/od + 3)) + 2W,(1- 1/(60 )2)(3A° + 1))

-W2(2W3od + 0  + (Od + A°.) 2 (2A° + 3 + 4e2 (1 + A°)(4A° + 1)/A°))) (16b)

However PC,, and fe1 ,, are not very easy to calculate because they involve temperature der-

ative at constant pressure and pressure derivative at constant temperature which can not be

calculated unless the equation of state is known. Explicitly,

0AH• 1 '°- OAH"' 8A°
pe,, = i- )P= A ( OT-)P, (17a)

9



'Pio 81-'! )T= ý (A•fO AO)T (17b)
aaLOP _ aeO ao

where A/J•f'° is the enthalpy

A1-i'° = AG•'° + TAffet' °= AEje"° + TAS"'° (17c)

and we have used the fact that for the MSA, AGi'° = AEj"'°. From (16a), we have
(el,0 O-8A0 a•- O•

j 1 A, = O,, (17d)

There are actually a few ways to calculate AH1"'° and hence, CPO,j. If the entropy is given by

(5a), which is obtained by taking the constant volume temperature derivative of the Helmholtz

free energy, from(8a) and (17c), then

AH-e'° = 2AEf'° - AA"'°, (18a)

aAHio (2CeLo + AS OA)1( (18b)

We can also use (17c) and calculate the entropy by taking the constant pressure derivatives of

AG•eiO with respect to temperature,

= =-( •-' )P. (18c)

It can also calculated using the thermodynamic relation

A~eO= A~e" + P~el"O (18d)

where ,0elo is given by (17d). If the MSA is a thermodynamically consistent theory, these

three routes should give the same result. Unfortunately the MSA is not a thermodynamically

consistent theory for AH"110 in this level, as we can see only some routes give reasonable results.

As a first step, (1),, and ("O)T should be calculated. Taking temperature and pressure

derivatives of both sides of (3a), keeping pressure and temperature constant respectively, we

get

(N-TI)p + °)T( a)v (19a)
(-T = V T )T(-1)v

10



T = T 0 ,\ (19b)

Using the definition of the compressibilities,

( 
(20a)

qV-)

-p (20b)•= V

equation (19).can be simplified

( -X-)p (aT + 1)(- -)v , (21a)
Oa° OT°(2b

(8' )T = -OT("& )v (21b)

To calculate a and # we need a state equation for the pure dipole liquid which has been given

by Rushbrooke et al1

PV2nRT(1 +•+2 + b°(2+ A°) 2 b2 (1+ A°) 2 + (3 + A°) 2  (AO)2 16
PV = 8(.( -7)- r-.(p* 3 2 (1 +-A') 4  + (1AO)4"

(22a)

The excess Helmholtz free energy with respect to the hard sphere system is given by

J3AA -(b°(2 +AO°)) 2 ((1 + A°) 2 + (3+ \0)2 (22b)

547rp* 2 (1 + AO) 4

where

•n = PdV/NA , (22c)

p*= Po', (22d)

7r
=-•p*, (22e)

6(A° - 1) (22f)
2 +AO

ab° _ 18 (22g)
OAO (2 + AO)2

NA is the Avogadro number. (22a) has a critical point characterized by

T. = .225, (23a)

11



P= .106, (23b)

P = .00704 (23c)

and

P-* -- .295 (23d)
pTC- - .29

where the reduced parameters are defined

=p, -- o , (24a)

T=kTa•
T*= 2 (24b)

From (22), the isothermal and isobaric compressibilities can be calculated, the details of which

axe given in the appendix, and the results are

PV

_.V nM W4 I (25a)n +O D°- WY(-aNT)v

V

POV nRT (25b)
~+ DO- W 4T(-')v9(25

where

W4 d2r '(25c)

P0 V 1 + , + ý2 _ (3
nRT (1 - e) 3  (25d)

Do 2(2 + 2ý -_ 2)

1 (1-)y ' (25f)

a 18 OA°
(a-)v =(2 +AO)2("t"T")v (25g)

The explicit formulas for the C~Op!0 and Q', can be now written out. From (17d) and (21b), we

get

._(26)

From (18a),

e, = (20d!O + ASd'o)(aT + 1) (27)

12



Using (17c) and (18c), we have

A11"' AGC.O - T( OT )P,(28a)

and (17a) gives,

1!0 = - T( (28b)
Pe's 9T 2  )

From (16a) and (21a), we get

(P -A )p = 0,ý;O(atT + 1) , (28c)
OT 49 O T

Then the entropy from this route is

Aý = -0ý"0 (aT + 1) (

and
1!0~ ~ ~ ~~e~ =C, VS. 8O 20xo ~

Ov1,O S ie, - T(aT + 1( T )p- TV f A)T ) (28e)

where we have used the fact that CV';T is a unique function of bO2.

We now consider another route, starting from (18d) and (26), we have

A~dO= A.EjelO - PfiTC,' 0 , 29

=se' ~P/3lc O (29b)

and

OGelo CeYe1j0 (aT + 1) - PTfi(ý )(;7P TCd';O( ~ p(29c)

where

(L#p =O~i -11T+ a(Dpo + DP') + W4T(O$)vp(3a

Oa PV Ob 0 20 )P= (-(alT - 21T 2) + W4((-2ffor)v~p - (Lo)/T)
T nRT a2 a

,02 b0  
_O Ob0

+at(fa(DPO + DP') + W 4 T(ý #)vp))/(ý-R + D~f W 4T(~)v) (30b)

13



which axe obtained from (a6) and (a8). We have used following notation

D' = 2(2 + 10ý + ý2 _ .3)
(1 -)05 (30c)

(54(od + o.,Ao)4(")P W3  2
S(2-+ \) 2  (io + A)(2° (3° + 1) + (co (6(1 + A) + A))

-(4eO(A° + 1)(1 + 4A°)/A° + 2A° + 3)(e° - 1)(1 + A°)A°)/(2/6W3WT) - (.-)v/T, (30d)

All the solvation thermodynamic functions are now given in terms of explicit expressions.

They can be calculated by only solving an algebra equation (3a). The MSA solvation energy,

free energy and entropy given in section A are thermodynamically consistent. However others

involve second derivatives and equation of states are not, only some give reasonable results.

III. Model calculations and discussions

Jansoone and Franck3 2 found that the equilibrium dielectric constant of water could be fitted

fairly well by the MSA formul.a, (2b). We pick 2.8 AO as diameter of water and adjust the

dipole moment so that the dielectric constant given by (2b) agrees with experimental data, ie.,

7.8.7 at 298K. The density of the.liquid is chosen as 1.0 gram per c&n, and the effective dipole

movement so obtained is about 2.22 Debye. The solvation Gibbs free energy, enthalpy and

entropy of alkalis and halides is listed in Table I, where the energy is in kU and the entropy

is in J/K. The second collumn axe the ion diameters used in the current calculations which

are from the X-ray electron density measurements33. Comparison between the experimental

data34'35' 15 at 298K and the calculations shows that agreement for halides are much better

than for alkalis. Corresponding Born calculations were carried out with ([,)p = -1.357,

which is the experimental value for water at 298KI'. As can be seen from (9f) MSA correction

to the Born Gibbs free energy is more than an effective diameter of the central ion. The

14



structure breaking, ie, solvent re-organization, cancels almo6t half of the ion-dipole term giving

a Gibbs free energy dose to the Helmholtz free energy which are listed in the seventh column.

Agreement between the MSA entropy and the experimental data is much better than that

of the Born approximate. In the MSA theory, the solvation entropy has contributions from

the solvent structure breaking and also solvent re-organization around the ion. In the Born

theory, the entropy is determined by the temperature derivative of the dielectric constant.

It is probably too simple to reflect the complexity of the solvation process. Table I shows

that the MSA solvation entropy may give better description of the structure change associated

with introducing an ion from gas phase to liquid. However the structure breaking and solvent

re-organization contributions in the ion-dipole model, may be over-estimated comparing with

those in the hydrogen bonded water. So good agreement with experimental may result from

cancellation of errors.

The apparent molar heat capacities and partial molar volume are calculated along an isobaric

line to the region near the critical point with the pressure being kept at 139 baxs. Calculations

were done for an ion of zi = 1, ao = 3.27A' and solvent of p = 2.2 Debye, ad = 2.5AO.

As we pointed out before, the MSA is not a thermodynamically consistent theory for these

thermodynamic quantities, and only some routes give reasonable results. We find that for the

system we have chosen (28e) is found to give better results. Since the equation of state for of the

MSA hard sphere dipole has a very different critical point and isobaric line to the critical point

from that of water we are not able to compare our calculation with experimental observation 23 .

As it is shown in Fig. 1 and 2, some of the basic features are well reproduced by the MSA.
The y 1 ,0 and !�,0 diverge near the critical point while - 1!0 changes slowly with temperature.

1 2 1 ! 0 t e d o i n r a e n a r t e c i i c l p i t

Just like the Born calculation of Wood et al24 the C'? tends to increase near the critical point,

but we do not see any evidence that it is diverging. As we can see from (26), (27), (28e) and

(29c) VieO and Oel!, are related to the compressibilities that diverge at the critical point. This

has to be physical reason why ve1,O and - 10 diverge in the critical region. From (16a) - 1!( is

related to some well behaved variables at the critical point. The MSA theory give a good due

15



to the question Wood et a124 raised in their Born calculation on the critical behaviour of C- 10.

The MSA dipole model has a set of classical critical exponents'. It would be very interesting

to make detailed comparison with recent thermodynamic data6. We would like also to apply

our theory to other ions, polar and non-polar solutes37 .
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Appendix: Derivation of a and 6

(22a) can be rewritten as

PV = P°V + Q(b°)nRT/p" (al)

where Po is defined by (25d) and Q(b°)
Q(bo) = b((2+ O)2 ((1 + Ao) 2 + (3 + Ao)2 (O) 2 + 16 (a2)

18vr 3 2 1+ TA°)4" (1 + AO)2))

Taking the derivative with respect to temperature, and keeping P constant, we have

oVPVTV Q(b°) 1 OV a 2(°)b )
P( p= PVT + nRT(-DopV(--•)p + R (--()p + "•2 ('•2pIp ) (a3)
p(- Vp N-- (a

We have used

-- )V(&••P -Doý 1 (aV)p (a4)

and
(4- = 1- V)p (a5)

From (20a) and (21a), that is,

_ )P

V

(Lb)p = (aT + 1)(2)v

we have
R~bo + Q(b~O) ,o)/* ,(a6o

PVa = PVIT + nRT(-Dka + Q +(ab + 1)(LQv . 6
P* ab2 OT * (6

It can be shown after tedious algebra that

Q(b2) )/V* = W4 (a7)

where W4 is defined by (25c). Solving for a we get

& = M •+ W4)v (a8)
•v P W4T(Z)v1
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Let us keep T constant and take the derivative with respect to pressure to obtain

OV o 1 V Q(bO) 1 aV OD
V + P(-5-)T = nRT(-DpT(--)T + -Q T(-1)T + v 2 )rb2/P*). (a0)

= (PT±PV ObO2 '9p)

Using (20b), (21b) and (a7), that is,

(IV-)T

p3=
8V

('O2T=fl("0)T

we have
V

POV Off (alO)

At the critical point,
POV + =D0 - W4T(2)v = 0, (all)

Or --- 0 , (a12)

/3 -- oo. (a13)

We have shown numerically that at the critical point found by Rushbrooke et al 29 this is correct.

Calculation of (2-)p and (M_)p is straightforward, but one has to remember that

W 4 T -= _ (a14)
2rp* 3kuJ

which is independent of temperature, pressure and volume, and

-DP aýDJ (a15)

18
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Captions

Table I: The experimental data of the AS? is from Abraham and Liszi'34, AH' from

Rashin and Honig' 6 and AŽGj calculated based upon these two. The energy is in kJ and the

entropy in J/K.

Figure 1: The MSA do and di as functions of temperature.

Figure 2: The MSA Iv ,0 as a function of temperature.
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Solvation thermodynamics of single ions

Ions vi(A°) Experimental The MSA The Born
____ u AXr __u ___ 'u A Ti"' A4I. u XF*,uAru AG"' AHiw"" Ar

Li+ 1.904 -470 -526 -187 -525 -464 -585 -204 -720 -733 -42
Na+ 2.352 -366 -412 -154 -450 -402 -497 -157 -583 -593 -34
K+ 3.024 -292 -328 -120 -370 -336 -404 -113 -453 -461 -27
Ca+ 3.584 -286 -283 -105 -322 -296 -349 -90 -382 -389 -23
F- 2.352 -453 -499 -155 -450 -402 -497 -157 -583 -593 -34
CV- 3.278 -328 -357 -97 -347 -316 -377 -102 -418 -425 -25
Br- 3.584 -305 -329 -81 -322 -296 -349 -90 -382 -389 -23
1- 4.032 -270 -288 -60 -292 -270 -315 -76 -340 -346 -20
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